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FOREWORD 

This report was prepared by the Environmental Control Branch of the Booster and 
Power Division, Dyna-Soar Engineering Office, Deputy for Engineering, Aeronautical 
Systems Division, Wright-Patterson Air Force Base, Ohio, under Weapon System 620A. 

The work was performed for the University of Buffalo, Buffalo, New York, in partial 
fulfillment of the requirement for the degree of Master of Science in the field of 
Mechanical Engineering. Professor Howard E. Strauss served as graduate advisor. The 
University of Buffalo has granted permission to the USAF to publish and distribute the 
thesis as an ASD Technical Documentary Report. Only those changes necessary to make 
the thesis meet the requirements of an ASD Technical Documentary Report have been 
made. 
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ABSTRACT 

Atmospheric re-entry of earth-orbital, hypersonic glide vehicles creates thermal 
problems. The heat affects not only the materials and construction of the airframe but 
also the crew and various subsystems of the vehicle. Successful solution of these problems 
depends upon the development of an effective thermal protective concept, which will also 
give the designer some latitude in his design philosophy. The role of the protective 
system is to significantly attenuate the influx of heat that is aerodynamically generated 
within the surrounding boundary layer. Attenuation is accomplished by combining external 
radiation shielding elements with backup insulation materials and an appropriate cooling 
system. 

Analytical procedures are presented for determining significant system parameters 
by transforming the differential heat conduction or diffusion equation into an algebraic 
expression by employing the calculus of finite differences. The adaptation of the resulting 
equation to digital computer programming is discussed, and numerical results are 
presented to indicate systems of minimum weight. 

PUBLICATION REVIEW 
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1.1 General 
1.0 INTRODUCTION 

Although aeronautical technology offers a number of techniques for the successful 
recovery of rocket-boosted orbital vehicles, the most attractive philosophy is derived 
from the principles of lifting body re-entry. Unlike trajectories characteristic of 
ballistic or semiballistic shapes that are controllable only to the extent of orbit ejection 
sequencing, a lifting body or glide vehicle can be piloted to a preselected site where a 
conventional landing is made. Atmospheric re-entry descent, within limited parameters, 
depends only on the judicious use of the kinetic and potential energy of the vehicle. 

The maneuvering capability of this type of vehicle during descent can be defined within 
velocity-altitude limitations of a flight corridor that is bounded by aerodynamic, aero- 
elastic, structural, and heating considerations. The upper limit is a result of instability 
of the vehicle at high angles of attack or a maximum attainable aerodynamic lift, while 
the lower limit is a function of maximum heating rates, allowable acceleration loads, or 
permissible dynamic pressure. An example of a glide-vehicle flight corridor is shown in 
Figure 1. 
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Figure 1. Flight Corridor 

Manuscript released by author on 20 June 1962 for publication as an ASD Technical 
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Various thermal protection concepts affect both of these limits for the following 
reasons: 

a. Aerodynamic lift is affected by wing loading or by the weight of the thermal 
protection system. 

b. Load carrying capability is a function of structural temperature, which is 
influenced by the effectiveness of the thermal protection system. 

As a result, thermal protection system optimization, that is, adequate protection for 
minimum weight, contributes to a broader altitude and velocity operational capability. 

Glide bodies, unlike ballistic shapes, experience long re-entry times while exposed to 
relatively low aerodynamic-heating rates. This he,at is transferred by boundary-layer 
convection to the surface of the vehicle where it can be radiated to space, absorbed by 
the outer skin, and transmitted to internal sections. Considerable advantage might be 
realized in external dissipation of this convective heat, since the technique does not 
result in additional vehicle weight, but is a function merely of the emissive power of the 
outside surface. A   knowledge of this factor along with the rate at which heat is aero- 
dynamically generated will enable, by use of the Stefan-Boltzmann relationship, an 
approximation of the equilibrium temperature of the exterior of the vehicle. 

Since the surface equilibrium temperatures during re-entry flight will exceed the 
internal conditioned compartment temperature, heat will penetrate to areas of compart- 
ment location. The modes of transfer, which include solid conduction, radiation, gaseous 
conduction, and convection, must be minimized to a degree predicated by the relative 
contribution of each to the total heat influx. 

Heat conduction that passes energy directly through the sections of a solid in contact 
with the hotter surfaces can be lowered by using materials that are classified as poor 
thermal conductors and by reducing the cross-sectional area normal to the flow path. 
The latter may be achieved by incorporation of a large number of gaseous spaces, since 
conduction through a gas is much less than conduction through a solid. Another technique 
would involve breaking the solid down into a collection of fine particles, which, by forming 
many points of contact within the material, would result in an increased resistance to the 
flow of heat. 

Heat transfer by radiation from the surface of a hot body occurs through a mechanism 
similar to electromagnetic wave phenomena and is, in fact, frequency dependent and 
intimately connected to that of light transmission. Geometric orientation of the surfaces 
relative to the incident radiation and techniques for reducing surface emissivity both 
contribute to the attenuation of this process. 

The transfer of heat by conduction within a gas is described as diffusion process in 
which the molecules are in motion between warm and cool areas. In addition, an 
exchange in kinetic energy occurs as wandering molecules collide with one another. 
Gases in a free unconfined state exhibit virtually no change in thermal conductivity as 
a result of pressure changes, because their average path length decreases as the 
number of molecules increase in proportion to the pressure. On the other hand, confined 
gases show lower thermal conductivities at reduced pressures because the number of 
molecules available for transporting heat energy approaches zero. This principle can be 
applied to reduce the effects of gas conduction by using the ambient pressures existing 
at altitude during re-entry. 
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Heat convection takes place as a result of a free-molecular mixing motion initiated by 
temperature differences within a gas. If the gas is contained within small spaces, the 
motion of molecules will be confined to an extent negating heat convection. 

If during re-entry the temperatures within the pressurized areas of the vehicle are 
maintained essentially at equilibrium without using compartment conditioning equipment 
to absorb heat penetrating from the external surface, then this function must be assigned 
to the thermal protection system. The feasibility of this direction is justified in view of 
available techniques that are more effective than those that depend on the circulation of 
a gaseous cooling media within a relatively large volume. A description ofthe aspects of 
thermal protection systems is presented in the following section. 

1.2   Thermal Protection Concepts 

1.2.1  General 

Systems protecting the internal structure or compartments from the effects of aero- 
dynamic heating consist of three major integrated elements. First, the exterior surface 
forming high emissivity heat-shield segments transmits to the surrounding environment 
a great deal of the heat reaching the vehicle from the boundary layer. The effectiveness 
of this scheme in minimizing internal heat penetration is shown in Figure 2. The second 
element, a lightweight thermal insulation, attenuates the remaining heat conducted to 
areas surrounding the environmentally controlled compartments. At this location, the 
heat is removed by a cooling system, which serves as the remaining element. 
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1.2.2   Radiation and Ablation Cooling 

The primary factors associated with the development of radiation heal shields are 
those governing the selection of materials, emissivity of the external surface, and the 
evolution of a suitable design configuration. Criteria forming a basis for material 
selection include oxidation resistance and strength requirements that are compatible 
with the specified service life and the external environments. As a result of the latter, 
surface-temperature histories of the vehicle are predictable functions of instantaneous 
heat generation rates during re-entry and the emissivity of the surface. The relation- 
ship between heating rates, emissivity, and heat-shield equilibrium temperature is 
shown in Figure 3. Details of design configurations are concerned more with the 
incorporation of stiffness and thermal stress alleviating features into lightweight heat 
shields to preclude panel buckling. 
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Figure 3. Effect of Surface Emissivity and Heat Transfer Rate on Equilibrium Temperature 

Vehicle surfaces that can withstand temperatures up to 2000oF can be constructed 
with super alloy materials using current manufacturing methods and materials technology. 
As metallurgical research uncovers new materials, this limit might be extended to 
3000'>F. Refractory metals, for example, are generally useful to 2700°F if effective 
oxidation-resistant coatings are available and high surface emissivities can be main- 
tained. Furthermore, refractory metals are not suitable for many structural applica- 
tions; hence, aerodynamic loads must be transmitted to more ductile members. Other 
refractory materials such as ceramics and graphites possess excellent elevated tempera- 
ture characteristics which, when integrated with suitable design concepts, also can be 
applied to exterior surface panels. 
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Still another approach is that of using an ablative surface that is combined with 
radiation shields to give a re-entry vehicle capability for returning from superorbital 
missions. Under these circumstances, trajectories that result in heating rates that are 
associated with the ablation process must be considered. 

1.2.3  Thermal Insulations and Cooling Systems 

1.2.3.1   General 

Radiation cooling that provides a high surface emissivity for a low weight, and 
materials characterized by relatively high heats of ablation, although effective, do not 
completely solve the problems that are associated with thermal protection for re-entry 
heating. As a result of extended flight through the earth's atmosphere, temperature 
gradients are established that cause heat to penetrate the external surface. This heat 
must be dissipated to maintain environments that are compatible with those required 
for human comfort and equipment operation. 

Several approaches can be considered for removing this heat or confining it to a 
region between the compartment shell and the outer surface of the vehicle. 

The methods that involve either the principles of heat storage or the vaporization of a 
liquid are as follows: 

a. Thermal insulation systems 

b. Liquid heat sink systems 

c. Systems that combine thermal insulation and liquid heat sinks. 

Low thermal diffusivity insulations can delay the influx of aerodynamic heat until 
completion of the mission. Two obvious physical-property requirements for these 
materials are a low thermal conductivity and high specific heat at the temperature and 
pressure levels that result from re-entry trajectories. Insulations available from 
industry, which can retain their form at elevated temperatures and low pressures do 
not display values for the properties just mentioned to permit their effective application. 
Denser forms and thicker sections of the materials must be employed as compensating 
measures to obtain the desired temperature-time response throughout the system. 

Protection systems using the latent heat of vaporization of suitable coolants represent 
a technological approach for removing boundary-layer heat that penetrates the exterior 
surface. The total heat removed or the weight of the coolant expanded during a re-entry 
trajectory is a function of the thermal conductance between the heated and cooled surfaces. 
A convenient means for reducing the conductance involves the use of insulating materials 
and form a protection system configuration when combined with a cooling system. 

Conformation of the schemes selected for further review and optimization resulted 
from the use of relationships derived in Reference 4 of the Bibliography. Solutions are 
presented in Figure 4 as a result of considering step-function temperature inputs that 
are equivalent to mean surface temperatures associated with re-entry flight. Weights 
for combined systems were determined from a steady-state heat balance that equated 
the heat conducted through the insulation to that removed by the coolant. The results 
verify that the most effective thermal-protection systems for lifting body re-entry vehicles 
combine insulations with expendable coolants. 
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1.2.3.2   Insulation Materials 

The selection of a thermal insulation involves a comparison of properties that indicates 
the potential capabilities of the materials. The insulating materials must provide not only 
a maximum resistance to the flow of heat but they must be light in weight and demonstrate 
the ability to endure mission environments with no evidence of degradation that is detri- 
mental to service life. 

A measure of the relative effectiveness of insulations may be derived by expressing 
the weight of the material as a function that depends on the physical properties. If 
effectiveness can be defined as the reciprocal of the weight of insulation, the function 
will be equal to the inverse of the density-thermal conductivity product. The effects of 
altitude on this product should be considered when thermal conductivity values are 
selected. 

A comparison of several commercially available, uncontained insulating materials is 
shown in Figure 5. The possibility exists that material characteristics dictate contain- 
ment concepts that significantly affect the thermal conductance of the system. For these 
cases, an apparent thermal conductivity that includes containment effects should be used 
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for a more accurate comparison. These effects are included simply by a weighted adjust- 
ment of both the thermal conductivity and density. 

Additional important characteristics of insulating materials are the following: 

a. Adequate compressive strength to insure retention and prevent settling; 

b. Softening point above the maximum operating temperature to prevent a loss of 
compressive strength and particle shape; 

c. Minimum contact area between individual particles to reduce solid conduction; 

d. Absence of sintering at operating temperatures to prevent degradation of 
material properties; 

e. Ability to attenuate radiant heat transfer by particle orientation and emissive 
characteristics, which cause sufficient radiation blockage; 

f. Particle size distribution and construction to minimize compaction under vibra- 
tional or gravitational forces; 

g. Low vapor pressure at maximum operating temperatures to preclude loss of the 
material; 

h.   Particle size that is so small that the mean free path of the air molecules be- 
comes larger than the particle spacing at moderate vacuums. 

Powder materials and fibrous forms of insulation have physical characteristics that 
effectively reduce each of the contributing modes of heat transfer and satisfy the 
preceding requirements. Gas conduction, for example, is lowered by the orientation of 
fine particles to create pore sizes, which, at moderate vacuums, are smaller than the 
mean free path that the gas molecules travel before colliding. Constituent materials for 
the insulation are chosen on the basis of their ability to attenuate heat flow through the 
materials. Major constituents such as alumina, potassium titanate, and fibrous asbestos 
have excellent insulating qualities, which, when coupled with the many joint resistances at 
the points where particles contact one another, resist the flow of heat by solid conduction. 
Thermal radiation can be reduced by the addition of both radiation absorbing particles 
(such as zirconia, carbon, and silicon nitride) and radiation reflecting or scattering 
particles (such as aluminum, platinum, or tantalum flakes). The effect of temperature 
and altitude on the thermal conductivity of an insulation powder is shown in Figure 6. 

Although fine powders permit a wider flexibility in selecting ingredients for specific 
temperature applications than do fibrous mats, problems that are associated with the 
packaging of these materials tend to overshadow any relative advantages. Specific 
problems include the following: 

a. Compaction and settling of constituents under vibratory loads, 

b. Excessive resistance to air flow during boost venting, 

c. Development of filter configurations to retain fine particles, 

d. Insulation package buckling due to thermal stress. 
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The more common fibrous insulations contain either aluminum silicate or silica fibers, 
which are useful to 2000oF   These are commercially available in various forms, namely, 
bulk, batt, blanket, cloth, molded shapes, and paper. The diameters of the fibers are in the 
range from 0.00003 to 0.0004 inch and the densities range from 3 to 26 pounds per square 
foot. The thermal conductivity for one of the fibrous quartz insulations is shown in 
Figure 7 as a function of temperature and altitude. 
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1.2.3.3   Cooling Systems 

Three cooling system concepts appear feasible for use in removing the aerodynamic 
heat that is transmitted through the insulation. These systems are defined in the 
succeeding paragraphs. 

1.2.3.3.1   Open-Cycle Systems 

The coolant of the open-cycle systems (a 99-percent water, 1-percent gel mixture) is 
contained by a sponge material within passages that are attached to a thin aluminum 
sheet. The assembled panels are mounted to the pilot and payload compartments; they 
enclose areas containing equipment that cannot tolerate exposure to the hot surface 
panels. When transmitted through the protective insulation, heat is absorbed by vaporizing 
the coolant. The steam generated is transported to an overboard dump where it is 
exhausted through a control valve, which functions primarily to regulate the coolant 
temperature. Another advantage of a pressurized system is the elimination of coolant 
vaporization during orbit since the vapor pressure of the gel would exceed the pressure 
within the passages. A schematic of this system is shown in Figure 8. 

INSULATION   AND 
RETAINER 

VAPOR  VENT 
VALVE 

COOLANT 
PANEL 

INSULATION 

•COMPARTMENT 
WALL 

Figure 8. Open Coolant System Integrated with Protection System 

1.2.3.3.2   Closed-Cycle Systems 

The compartment shell or primary structure of the closed-cycle systems, constructed 
from an aluminum alloy, contains an integral tube circuit that forms a closed transport 
loop through which a coolant is circulated. During re-entry, heat transmitted through 
the insulation is absorbed by the circulating fluid and transferred in a remote heat 
exchanger to an expendable heat sink that uses its heat of vaporization in the process. 
The rate of flow of the expendable coolant through the heat exchanger regulates the 
temperature in the closed loop. Figure 9 shows a schematic of a closed-cycle system. 

11 



ASD-TDR-62-625 

FROM  HIGH   PRESSURE 
HELIUM SUPPLY 

OVERBOARD 
DUMP 

J L 

Ö 

k3 
GLYCOL 

TANK 

PRESSURE 
REGULATOR 

FLOW 
CONTROL 
VALVE 

HEAT EXCHANGER 

TEMPERATURE 
SENSOR 

6-D-v MtlMMB» 

FLOWMETER PUMP Ö 

I WATER TANK 

PRIMARY STRUCTURE 

(INTEGRAL   COOLING 
CIRCUITS ) 

Figure 9. Closed-Cycle Cooling System 

1.2.3.3.3   Combined Open-Cycle and Closed-Cycle Systems 

The combined open-cycle and closed-cycle systems can be used advantageously to 
enhance the overall configuration of the system. In general, the closed-cycle systems 
can be adapted readily to large surface areas and thermally complex sections where 
local conductance values vary significantly. Areas where appreciable heat conduction 
results from structural framework that support hatches and windshields, and members 
that extend between the outer heat shields and the cooled inner structure or compartment 
walls are examples of this case. On the other hand, remote equipment and movable 
surfaces might be more effectively cooled by an open system to eliminate long or 
flexible connections, which would be more susceptible to fatigue. 

12 
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1.3  System Optimization 

In the final analysis, many design parameters might influence optimization procedures. 
These include allowable material temperatures, reliability considerations, volume limita- 
tions, flexibility and fabrication requirements of the system, systems that are readily 
accessible for servicing, and ease of adaptation to straightforward preflight checkout 
procedures. In addition, the thermal protection system must be able to survive environ- 
ments that are associated with ground support as well as all phases of an orbital mission. 

The integration of the components of thermal protection systems into a system of 
minimum weight can be performed after the type of insulation and cooling system have 
been selected. Essentially, the optimization process involves a tradeoff between insula- 
tion and coolant requirements to arrive at a combination of minimum weight. The 
following sections present the analytical techniques associated with this process. 

13 
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2.0 SUMMARY 

A thermal analysis and an analytical procedure of practical significance are presented 
and applied to establish meaningful design parameters for thermally protected glide 
vehicles that re-enter the atmosphere. With only slight modification, as dictated by 
particular boundary conditions, the techniques developed may be useful for obtaining 
solutions to a number of problems in the field of heat transfer where temperatures are 
functions of spatial and time coordinates. 

The genera] differential heat conduction or diffusion equation, extended to include 
temperature-dependent thermal properties, was transformed into an approximate 
algebraic expression by employing the calculus of finite differences. The difference 
terms replacing the partial derivatives were the first approximations of the derivatives 
of polynomials, obtained from the Gregory-Newton and Stirling interpolation formulas, 
which represented the temperature at any point In the coordinate system. 

Three realistic thermal protection systems were analyzed by the application of this 
general difference equation together with the appropriate boundary conditions. Three 
configurations were selected: an insulated and cooled structure, an insulated and cooled 
compartment combined with a "hot" structure, and an internally radiation-cooled 
structure. The boundary value problems in each case were reduced to expressions that 
enabled a prediction of the temperature history throughout the configuration, instantaneous 
rates of heat transfer to the cooling system, as well as the total coolant requirements that 
were based on the amount of heat absorbed during a typical descent trajectory. 

The equations resulting from the analysis of the insulated and cooled structure were 
programmed on an IBM 7090 computer and numerical solutions were obtained. Tempera- 
ture surveys for this case are presented in the results and the significance of optimizing 
the design is duscussed. 
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3.0 THERMAL ANALYSIS 

3.1   Problem Statement 

Optimization procedures establish, by an orderly analytical process, the insulation and 
cooling requirements for thermal protection systems of minimum weight. These require- 
ments are set forth by arranging the problem solutions in an expression for the total 
system weight as a function of insulation thickness and then by selecting the thickness, 
which corresponds to the minimum combined weights. The techniques involved in 
generating sufficient data to adequately define this function will be presented in this 
section. 

The total weight of the system can be divided into two basic elements; the weight of the 
insulation that is assumed as an input to the problem and the coolant weight that is 
expended as a result of absorbing heat, which is conducted through the insulation from 
the surface of the vehicle. The latter quantity can be determined from the solution of the 
boundary value problem for conditions that define the time-dependent flow of heat 
through the insulation. One condition on U, which is a familiar parabolic partial differential 
equation, can be written in the form 

U,      =   G (U) (1) 

where the right-hand term is a second order elliptic partial differential operator with 
either one, two, or three independent space variables. Now if R is the region of the space 
variable or variables bounded by D, then the values of U in R can be determined for all 
t > t0 after U in R is specified for t = t0 and the values of U on D are known for all t >t0. 

Since obtaining solutions to this problem by analytical methods is not practical, an 
approximate numerical method can be used which replaces the partial differential equation 
by a partial difference equation. This method, described here, is the method of finite 
differences. 

A grid network of regularly spaced straight lines, each parallel to one of the coordinate 
axis, is superimposed over the region R. In addition, a time increment, p, is introduced, 
which essentially represents a new dimension to the mesh. Now instead of solving a 
complex differential equation for all values in a continuous region, only approximate 
values of the solution must be obtained at the mesh points that are formed by the 
intersections of the network lines with each other and with the boundary of the 
region. 

The method of obtaining the difference equation for each of the interior mesh points 
involves a transformation of the differential equation by replacing the partial derivatives 
with corresponding difference quotients. As a result, the problem can be formulated 
into a series of linear algebraic equations where each defines the conditions at a 
particular interior mesh point. In the case of the boundary value problems that are 
considered in the following sections, the solutions will involve a system of n linear 
algebraic equations with n unknowns, where n is the number of interior mesh points. 
All values pertaining to the boundary mesh points will be prescribed. 
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Since the initial values for U for the interior points are known for t = t0, the solutions 
for the first set of n algebraic equations will apply for t = to + p. Successive iterations 
will result in approximate numerical values of U for ail mesh points in R when t = t0 + lp, 
to + 2p,... ,to+mp where m is the total number of time increments. 

An explicit procedure for solving boundary value problems of the type containing 
Equation (1) is referred to as the forward difference method. Each value of U can bp 
determined for any value of t if all values for U at the preceding t are known. Unfortunately, 
the forward difference method may be numerically unstable unless restrictive conditions 
are imposed upon a parameter for selecting p. As a result, the maximum value for p is 
limited; nevertheless, for most cases p must be chosen so small relative to the space size . 
of the mesh that the computational labor involved prohibits solutions except where high- 
speed digital computers are available. 

Once the values of U have been established for all mesh points within R and for t = t0+ Ip, 
to + 2p... .,to + mp, then the rate of heat flow, q, across the boundary can be calculated. 
The total heat removed, Q, can be determined by a summation of q. 

m 

mp     Z    q (2) 
I 

From this term, the total weight of the coolant expended is determined by dividing by 
the enthalpy that is required to convert the liquid coolant to a gaseous state. This process 
can then be repeated for a number of initial insulation thicknesses to arrive at some 
relationship' between this independent variable and the coolant requirements. 

The introduction and availability of high-speed computational machines have made 
practical the solution of this problem by numerical methods. Unfortunately, considerable 
effort is involved in formulating the problem into computer language and preparing the 
machine program. As a result, the time lag between the start and solution of a problem 
might be significant but of less relative importance where a great many cases are to be 
solved. One valuable aid for expediting problem processing is an adaptation of a concise 
format for presenting solution procedures. Section 4 contains the problem statement in a 
recommended form that can be understood by engineers as well as programmers. 

3.2   General Assumptions 

Before presenting a solution to the time-dependent heat transfer or diffusion equation, 
certain assumptions suggested by the physical nature of the problem should be reviewed. 
These involve the selection of significant spatial variables, the manner of analytically 
expressing material properties, and general definitions pertaining to boundary conditions. 

The first problem can be resolved by determining the relative significance of heat 
transfer with respect to the coordinate system shown in Figure 10. These coordinates 
pass through an element of insulation in an area of the vehicle where the orientation of 
isotherms results in maximum heat-flow rates. Since the thermal conductivity of the 
material is identical in all three directions, then only the ratio of temperature gradients 
in these directions need be compared. 

Temperature variations with distance can be expected to reach a maximum in a section 

directly behind the leading edge of the wing where the value for A   , i A     = 50, or only 
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Figure 10.  Element of Insulation 

2 percent of the heat conducted depthwise through the structure will be transmitted in a 
chordwise direction. In Section 5, you will note that the total weight of the system will 
not be affected by this small percentage. The heat transferred in a spanwise direction is 
still smaller; in fact, it can be considered as nil. 

Another section of the vehicle that was chosen for evaluating the merits of a three- 
dimensional heat-transfer analysis was the upper, rear portion of the fuselage where 
the surface temperatures during the period of maximum re-entry heating are relatively 

A u(x)A z low. In this area, the value of the ratio- 200, which indicates that the radial Au(z) A x 
heat transfer far exceeds the circumferential conduction; hence, the latter could be 
neglected. The same approach can be applied to justify neglecting heat that is transferred 
axially along the fuselage. 

Although we have shown that analytical solutions in the practical sense will be 
sufficiently accurate if, in general, only one-dimensional heat transfer is assumed, a 
numerical approximation of the diffusion equation in three spatial variables will be 
derived, since it provides a valuable tool for evaluating a number of engineering 
problems in heat transfer. The matter of transforming the derivation to a one-dimensional 
equation is accomplished merely by retaining only those terms applicable to the particular 
problem in question. 

During re-entry, the temperatures of the external heat shields may be related in some 
manner to mission time. Although no exact mathematical formulation is possible for this 
function, it may best be approximated by a series of points; its neighborhood can be 
defined by linear interpolation. This assumption is not as wieldy as it may appear, since 
digital computer techniques can readily handle this procedure. 

Another general assumption is associated with the mathematical treatment of material 
thermal properties; namely, surface emissivity, thermal conductivity, and specific heat. 
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The thermal emissivity of the material surfaces is assumed to be independent of 
temperature. This assumption is valid for two reasons. First, the emissivity of surfaces 
experiencing an appreciable temperature variation (in the order of 2000''F) during re-entry 
are essentially grey bodies. Secondly, all nongrey surfaces experience only a small change 
in temperature, usually less than i00oF. 

Thermal conductivity and specific heat, on the other hand, are definitely functions of 
temperature. If these properties are inspected for a number of applicable materials, we 
see that thermal conductivity can be reasonably defined by a quadratic term while 
specific heat can be approximated by a linear function. This approximation results in 
expressions that are easily operated upon and. in addition, provides a convenient means 
of reducing the degree of the equations by setting coefficient equal to zero. For example, 
if the thermal conductivity is best represented by a linear function, a second degree polynomial 
can be replaced by a linear function merely by equating the coefficient of the squared term to 
zero. Assumptions concerning the selection of a value for the radiation form or geometry factor 
and a decision to omit air convection terms have been made in the interest of generalizing 
solutions. Since both of these terms are related to specific locations of vehicle surfaces, 
including particular design considerations would be necessary for all cross-sectional areas of 
a thermally protected airframe. 

Many other significant assumptions could be discussed; however, they are more closely 
associated with particular boundary-value problems and would not apply in general. These 
assumptions will be reserved for Section 3.4 where particular boundary value problems 
will be analyzed. 

3.3  Solution of the Diffusion Equation 

The partial differential equation describing the time-dependent flow of heat through the 
thermal protection system is derived in this section; it is then transformed into an 
algebraic expression by the application of the calculus of finite differences. The final 
form is one that expresses the temperature of a finite element at time t + 1, in terms of 
the temperature of elements at time t. By successive application of this equation together 
with appropriate boundary and initial conditions, the temperature history through the 
insulation may be predicted; thereby, the rate of heat transfer from the n^ element is 
established. This latter quantity establishes the cooling weight of the system for any 
given amount of applied insulation. 

Note Figure 10. The heat entering face Ix can be written as 

du 
dQx    =   dydz k (u)^j-   df (3) 

Now the heat leaving face 2x at x + dx can be determined by letting 

FU.u)   = Mu) — (4) 

By changing x to x + dx, F(x,u) becomes F(x + dx,u). This latter term may be expended 
by using a Taylor series, thus 

F(x+dx,u)   =   F(x,u)  + -—• dx =   k (u) -~ 4-—— k(u)-—^-   dx /5) 
Ö X Ö X ox ox ^   ' 
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Therefore, the heat leaving face 2x can be expressed as 

dQ x +dx dy dz [k (u) -ir- + -r- i.(u)-^-dx] dt 
d* dx Ox J (6) 

This same approach would apply to adjacent y and z faces. That is 

and 

dQ      = - dxdz   k(u) -r**- 
y dy 

df . 

dQ¥-(-dv = - dxdy f11'"'"   +•—^— k(u)       U 

'        ' L dy a y dy 
dy ] dt 

dQ,    = -dxdy   k(u ) ——   dt , 
z oz 

dQz^2 =- dxdy   [kCu) jf   + ^  k(u)-|r dZ] dt 

(7) 

(8) 

(9) 

(10) 

Since the net heat flow into an element must be equal to the heat stored within the element. 

du 
dOx+ dQy +   d02   =  dO^ + dr   +dQy 4.,^ + dQz + d2 +A>cpdxdyd2— dt 

(11) 

When the dQ terms are replaced by the expressions Equations (3), (6), (7), (8), (9), and 
(10), all terms to the left in Equation (11) are cancelled by the first terms of the 
first three expressions on the right. The result is the following three-dimensional 
conduction equation: 

a      , , au 
    k(u)— 
d» dx dy 

d       .   s   du 
k(u) 

dy 
k ( u) 

dz dz P c 
du 

*    dt (12) 

Equation (11) can be expanded to 

k(u) 
d du 

k(u) 
ax a« 

a2u 
ax2 

a        . au     . . a u 
k(u)   k (u) -—3-   + 

ay 

     k (u)  
az ar 

k(u) 

ay 

a2u 

az2 

ay' 

P0p 
at (13) 

Equation (13) can now be transformed into an algebraic expression by substituting 
appropriate finite difference relationships for the partial derivatives. These approxi- 
mations, derived from interpolation formulas, are listed as follows: 

au 
ax 

i-   [ u ( i + I, x.t ) - u ( i-  l.x.t )1     , 

(-d7-)2= ^r["(' + i.x.t)-u(i-i.x.t)]2. 

a2u 

4h 

I 
■g-  [u{i+  l.it, tl- 2u (i,t) +u (I - I, x, f ) ]  , 

(14) 

(15) 

(16) 
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du I [u( i, t-M ) -  u (i, t )] 
dt P       L     J (17) 

TT = T   ["<' + '.«.»'-"H.t)] (18) 

Although these expressions have been written for the x direction only, those for the y and 
z spatial variables are similar. In addition, a square element was selected to eliminate 
area terms from the final equations. The derivation of these expressions is included in 
Appendix I. 

Now the thermal conductivity of the material can be expressed as a function of tempera- 
ture by the polynomial 

Mu)   =  A0+ A, u    +   A4 u2 

(19) 

and the specific heat by 

cp (u)   = B0+ Bt o . (20) 

Taking the derivative of Equation (19) and dividing by a x gives 

dMu)       , A     ^ „.        .du •=    (A.   + 2 A, u   ) (21) dx ' z dx 

Substituting Equation (21) into Equation (13) results in the expression 

A, +2A2u  (-|^-)  4- A0 + A, u   -I-A2 u2 (-y-^r)  + A,   +• 

(d u   \ 2 i d    u   \ , d u   \ 
—)+A0+A|U    +AaU«(__)+Al+2AgU(-7-)  + 

A0   + A.u    +A2U
2  (-^)   ^     (Bo+B.u)-^- (22) 

Replacing tHfc derivatives with the appropriate finite difference relationships gives 

—'-r[ A, + 2A2 u  ( i.f)]   { [u2^ + l.x.t )-2u  (i+ l.x.t) u (i- I, x,f )-Hu2(i-l,x,t)] + 

[u2(i+l,y,t ) -2u ( i + l.y.f ) u( i-l,y,t) + uZ(i-l, y.f) ] + 

[u2(i + l,z,t)-2u(i+l,z,f)u(i-l,z,t)+uZ(i-l,z,t)]}   + 

—T"[A0 + Alu(i'  » )+■ A
zu2 ('.»)]   {[u(i+ I, x,t)-2u( i.t) + u(i- l,x,t )] + 

[u (i-H,y,t) -2u(i,f)-l-u(i-l,y,t)] + [u(i+l,z, t)-2u(i,t) + u( i-l,z,t)]} = 

-^-    [ B0-l-   B,  U(i,f )   ]   [   u  (j,, H- |) _u( i, f )] (23) 
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Finally, solving for u(i,t + 1)gives 

P r u ( i.f + I ) =   u(i,t ) + z r T-  {   A.+  2A2u(i.t) 
20^hz [B0+B, u(i,t) ]     l      ' 2 

[u2(i + l,x,l)-2u(i+l,x,f)  u(i-l,x,t)H-u2(i-l,x,f)  +U2(i4-I,y,t)- 

2u(i+!,y,t)u(i-l,y,t) + u2(i-l,y,t)+   u2(i+l,2,t)-2u(i+l,2, f)u(i-l,z,t) + 

u 2 ( i - I, z.t )] + 4 [A0+ AJU (i,t)-+ Azu2(i,t)] 

[ u (i + l,x,t) + u(i-l,Ä,t)+-u (i + l,y. t) + u(i-l,y,t) + 

u(i-tr,z, t)+u(i-l,2tt)-6u(i,t)]   } ,24, 

For the case of one-dimensional heat flow, all terms associated with y and z directions 
will drop out and Equation (24) reduces to 

u   (i.t + l)  =u«  i,f)H — 
20/ohZ [B0+ B|   U (i,t) ] 

{A^ 2Agu(iIt) [u2(i+l,t)-2u(i+l,f)u(i-l, t)+   u2(i-l,t)] + 

4[A0+A|u(i,f)+A2uZ(i,t)]  [u(i+l,t)-2u(i,t>+u(i-l,t)  ]} ^25^ 

This is an expression for the temperature of an element of insulation of length h and of 
unit area at time t+ 1, in terms of temperature-dependent thermal properties and the 
temperature of the same elements at time t. 

3.4   Boundary Value Problems 

A number of typical boundary value problems that were encountered during the formula- 
tion of optimization procedures for thermal protection systems are presented in this 
section. Each problem is associated with some definite combinations of thermal insula- 
tion and cooling system or thermal insulation without a cooling system, which are 
representative of schemes evolving from current technological developments. The 
following types will be analyzed in the following sections: insulated and cooled 
structure, insulated and cooled compartments, and insulated structure. 

3.4.1   Insulated and Cooled Structure 

A cross section through the wall of an insulated and cooled structure is shown in 
Figure II. Let s represent the external surface of the radiation shields, o the interface 
between the heat shield and thermal insulation, r the inboard surface of the insulation, 
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c the cooled structure and g the compartment atmosphere and insulation interface. 

HEAT   SHIELD 

INSULATION 

c 
PRIMARY STRUCTURE 

INSULATION 

COMPARTMENT   ATMOSPHERE 

Figure 11. Insulated and Cooled Structure 

The conditions of the boundary value problem are stated as follows: 

Considering the outer layer of insulation (o to r) gives 

O <  x < r , f   > O   , U,    ( x , f )     = G    (U ) 

U x    ( x , t )     =  Ö_  [u(,,t)-u(o.t)l 
Mu) L J 

Ux    (x, t) =   Ca +Cr 

Mu) 
[uu.n- u (c) ] 

and 

U     ( x , o)    =    constant 

x =  O, t >   0 

x =   r. t   >   0 

O < x < r,   t   =0 

(26) 

(27) 

(28) 

(29) 

A similar set of conditions applies to insulation contained by the cooled structural 
shell: 

U,   (x.t) =   G(u) 

U,. (x,t) 
Cq-t-Cr 

k(u) 
[u (r, t) - u(c)] 

c < x  <  g,t   >0  , 

x =   c,t  >0     , 

(30) 

(31) 

(32) 

(33) 

The problem statement can now be completed by stating the remaining relationships that 
affect a solution thus 

Ux(x,t)=        Ch [u(g,t) - u (v)] x   =   g,f>0    , 
k(u) 

U   ( x, o ) =     consta n t c<x<g,t   =0- 

U   (s ,1)   =   F(t ) 

U   (c ,» )    =   con s t ant 

x = s, t  >   0    , 

x = c, t >   0    , 

(34) 

(35) 
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U   (v,r)   =   constant x = v, t >    0 (36) 

The preceding conditions can now be transformed into algebraic expressions by replacing 
the derivatives with the corresponding finite difference relationships listed in Section 3.3, 
Equations (14) through (18). 

The transformation of the identical Equations (26) and (30) was discussed in Section 3.3. 
As a result, Equation (25) was derived. Similar operations on Equation (27) will now be 
performed: 

Mu) 
du 

=   C. [u  ( s, t )    -   u (o, t   ) ] (37) 

where C5 is the conductance of the radiation heat shield. Referring to Figure 12, 

OUTER FACE 

: 
■'.;■ 

.- •. CORE i. 
INNER FACE 

Figure 12. Heat Shield 

cb =   Cd ■•" Ca   + Cr (38) 

states that the overall conductance of a honeycomb sandwich panel is the sum of the 
conductance through the metal core, C^, and the conductances of the air space C    + C  . 
Now 

kd   <") Sd ka (" )S0 ,     Cr =   Cr(u) S0 

But Cj, can be approximated by a quadratic 

cb   =   Do -'-   D,  u   + D2ui 

(39) 

(40) 

completing the transformation 

"T ^O'1" ~z~ [u(o,t + l)+u(o+l,t + l)]+ -^- [u2(o,t + I) + 

2u(o,t+l)  u (o-M , t -H)  +  u2(o + l.t+l )]}[u(o,t + l)-u(o + l,t+l)] = 

D0  + —!- [u(s,t + l) + u(o.f+l)]+-^-    [uz(s,t + n + 

2u(s.t + l)u(o,t+l)+   u*(o,t + l)][u   (s,f+l)-u(o.f4l)] ^41v 
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Expanding, collecting, and transposing terms. Equation (41) becomes 

(A2+D2h)uS(o,f + l)+[2A|+A2u(o+-l,f+l) + 2hD|+hD2u(s. f+l)]u2(o,f-fl) + 

[4h00- hD2 u2(s , f+ 1 )-A2üZ(O + I, 1+ l)+ 4 A0]   u <0 , t 4-1 ) - [ 4A0u (0 4 1, t + I)   + 

2Alu
2(o+ l,t + l) + A2u3(o + l,t+l)+  4hD0u (S ,t+I) -I- 2h D, u2(s,f4-l ) +• 

h D2u3(s, » +1  )]    =0- (42) 

The term u(s,t +1) = F(t) is given and u(o + l,t + l) can be determined from Equation (25); 
therefore, u(o,t + i) can be found by solving Equation (42). 

The transformation of Equation (28) is accomplished in a similar fashion 

k{u)_iL_|     =Co +Cr   [u(r.t)- u(c)] (43) 

*       x = r 

where 

Mu) >     ..       .   . ^o2Um2) Ca    =   " 
J-o ^a 

« Aoo -•- Aa, u_ 4 fn 

where ka is the thermal conductivity of air. 

In Equation (44), 

um  = 
u (r, t + 1 ) + u (c) 

Also, 
2 

(44) 

[459.69   +  u( r.t + 1)1     -[ 459.69 + u(c) ] 
Cr     =    «T Fe  Fa    {  -} 

u (r, I 4- I) - u ( c ) 

Expanding Equation (46) 

f u4( r,t + I) + 1838  8u3 (r, f + l) + 
u(r, t+ I) - u(c)    L 

1267.9 X I03  u2 (r,t + I ) + 3885.6 X IOS  u (r,t+ I ) - 

u',(c)   -1838.8 u3(c)   - 1267.9 XIO3 u2(c) - 3885 6 X IOsu( c)] 

(45) 

(46) 

O-   % Fa 

(47) 

Substituting Equations (44), (45). and (47) into Equation (43) together with the finite 
difference expression for the partial derivative yields the following: 

24 



ASD-TDR-62-625 

if r   u(r,l + l )4-u(c)   ■. r u(r, t+l ) +   u (cJ   ,1    . 

r{Ao+A. I i J+A.[ i ]  } 
[u(r1r+l,-u(c,]={Aao + A<|I     [   "^■».u.c,   ]4 

^   uC...^.,^^    ]«  }  [  u«M^»-U(c)   ]  ^  ^ M4(rtt4|), 

i 8 38. 3 «r F€ Fffl u" ( r , t + I ) + 1267. 9 X 10* o- % Fo u* (r, t + I ) + 

3885.6 X I0"<r F€Fa u (r,f +1 »-<r F€ F0   u*(c) -1838   8o-F€F0 u* (c) - 

1267.9 X  K)' «rF€ F0 o*|c) — 3885.6 X I09 <r F,  F,  u(c) „^ 

Equation (48) reduces to 

4h<rF<Fau
4 (r,t+ I) +   ( —*-   -f 73 55.2 h «r Fe Fa - Af )u'( r, t + I ) +• 

[      .  W    +  y22-    u(c) +5071.6 X lO'htr F# Fa  -2A    -A, u(c)]u,(r,f+l) + 
^    -co £a 

r^hao  +   A       «(c) +|554 2xl08ho-F   F0  -4A f*-  u*U)l u (r.t + I )-f 

[.                      -              4 h A. _                         2 h A _, 
4A0u(c)<-2A.u"(e) -•-A,us(c) t

ao      a{e) 7^-  u*(c) - 
yta                              ■*'a 

hA 
S^-   u'(c)- 4ha- F^F,,  u*(c) - 73 5SL2 h «r F€ F0  us(c) - 

5071. 6 X   10s ho-F^ Fa ut(c)  -  15542 XIO8 ho-Fg F0   u(c) ]   =     O ,49j 

Again, this equation can be solved for u(r,t +1), since all other terms are known or can 
be determined by previously established relationships; 

We assumed by Equation (35) that the circulating coolant media maintains a constant 
structural temperature; hence, the heat capacity of these elements does not affect the 
temperature gradient. Furthermore, the thermal conductivity of common materials used 
in this area are very high as compared with those of thermal insulations and, when 
coupled with typically thin sections, the temperature drop across the member is 
negligible. 

Continuing with the solution, the temperature of internal elements on the inboard side 
of the structure can be determined by Equation (30). Again, the transformed relationship 
is identical to Equation (25). 

Now Equation (31) states that the heat transferred from r to c is equal to the heat 
absorbed by the first element of insulation adjacent to c. A solution in this case was 
previously obtained (Equation (49)), since the temperature of c is constant; therefore, 
u(c) is independent of conditions beyond that station. 
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The relationship remaining to be solved is Equation (32) thus 

k(uj -|^— «   Ch [u(9,n - u(v)] 
«= 9 

Again, the partial derivative is transformed to the difference relationship 

"h" {A0+ -^ [o (g-l,t+l)+ u(g,♦+!)] + -^i- [uI(9-l,t+l) + 

2u (g-l, »+ I ) u(g,f+ I ) -t-u2 (g,t+l )] }   [u (g-l, t+-1 )-u (g, t f I ) ] = 

Ch   [ü(g,tH-.)-u(v)] (51) 

Expanding, grouping terms, and transposing. Equation (51) becomes 

A2uS(9,t + l) +[2A|  - A2u (g- I , t+ 1)] u2 (g.f+l ) ■»-[4 A0-A2 u2(g-l, f f I)+4^Ch]u(g,t+l)- 

[4A0u (g - I, t+1)-♦-2 A^'C g-l,t+l ) + Agus (g-l , f+1 ) + 4 h Ch u(v ) ]    = 0 (52) 

The solution of Equation (52) for u(g.t +1) completes the process of determining the 
temperature distribution through the thermal protection system at time t + 1. A repeti- 
tion of the process results in the temperature distribution at time t +2. By this technique, 
the temperature distribution for all t's may be established. 

An internal cooling system maintains u(v) constant by circulating the compartment 
atmosphere across the face of the insulation. A similar condition existed at c where a 
fluid is circulated through passages that are attached to the structure. Determining the 
weights of coolant in each case requires that the rates of heat removal at c and v must 
first be calculated. 

At the structure, c. 

q(c,t + l)   =   Ca + Cr    [u (r.t -tl) - u(c) ] ,53^ 

since u(c) is a constant. Equation (53) simply states that the rate of heat transfer to the 
coolant at time t +1 equals the rate of heat transfer across the air gap at time t + 1. The 
total weight of coolant expended during re-entry is then 

WC   ='^_?    q,C,,)- (54) 
Novf the rate of heat transfer to the compartment 

q( v, t-M )    =   Ch   [u( g,»+ I )-u(v)] 

and the weight of expended coolant 

*v  =-^f-^ q(v.t). (55) 
fg 
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The amount of insulation in each case, which results in a minimum combined 
insulation and coolant weight, can be determined by repeating the solution for several 
insulation thicknesses; then the combined weights can be compared with the insulation 
thickness. 

3.4.2   Insulated and Cooled Compartment 

A typical section of this construction, consisting of an insulated radiation shield 
exposed to the airstream and an insulated cooling system attached to the compartment 
wall, is shown in Figure 13. The various surfaces and interfaces are identified as 
follows: 

a. At x = s, the exterior surface of the radiation shield is supported from a stiffened 
panel, f, by refractory metal members. 

b. At x = o, a retaining sheet confines thermal insulation in an area that is adjacent 
to the cooling system, r. This assembly together with another layer of insulation is 
supported from the compartment wall, c. 

c. The compartment atmosphere is located at x = v. 

The boundary value problems associated with this case can now be specified. 

HEAT    SHIELD 

INSULATION 

0    STRUCTURE 

ay 
(D; S 

®- 

INSULATION 
COOLING  SYSTEM 

(§)    COMPARTMENT  ATMOSPHERE        

Figure 13. Hot Structure - Insulated and Cooled Compartment 

Conditions tor the insulated radiation shield are as follows: 

Uf(x,t)=G(u) s<K<f,t>0, 

U (s.t)       = F, (tl x =   s ,        t   2 O  , 

U.dt.t)  = —{(Ca + Cr)[u(f,f)-u(o,nl- 
k(u) L ■' 

C,   [u(s,t)-u t»,»)]} x=f. f>0. 

(56) 

(57) 

(58) 
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U  ( x f o )    = constant *<*<t,t*0   . /^g\ 

For the insulation between x = o and x = r, 

Ut (x.t ) = G (u) 

u«(x' • *= ih ^ (C°+c') [u (,'''"u ,o•, ^ 

U''U,,>= T^t qs(r, + q«l(,)+qotr,l 

o < x < r,   t >o , (60) 

x   =  o.      t >o , (61) 

x   =   r ,     t > o , (62) 

o <   x < r, t = o . (63) U  (x , o)    =    con st ant 

Finally, for the remaining section of insulation between x = r and x = c 

Ut(x,t)    = 6(u) r<x  <c  , t >o  , (64^ 

Ux(x'n   = ^7. [<'i<f ^ ^s(r)+qd(r))] » = '• ,>0 
k(u) 

(65) 

U.-Cx.t)    =—    fq   (c) + C     (u(c,t)-u(v),)l x=c. t>o. /66) 
Mu)    L s >■   \ 

U(x,o)=constanf r<x<c,t=o /gy^ 

Relationships, in addition to those just listed, which will be required for a solution, are 
as follows: 

U   (r ,t )      = F2 < t ) x   =r ,     t >  o   , (68) 

hf       (r )       = F3  (t ) x  = r,     f >    o  , (69) 

U   (v, t )     = con sfant x s v,     t S   o  . ,-j^ 

Following the procedure applied in Section 3.4.1, the partial derivatives of the 
boundary condition are transformed to finite difference expressions. Equations (56), (60), 
and (64) reduce, as before, to Equation (25). 

Since the temperatures of x= s for all t's are givön, and the temperature of internal 
elements of insulation for the first-time step, t + 1, can be determined from the solution 
of Equations (56) and (60), then the next operation should produce the temperatures at 
x = f and x = o for this same time step. Now the rate of heat transfer from the insulation 
element at x = f must be equal to the rate of heat transfer to the insulation element at x = o 
if the material in the region f £ x < o has zero heat capacity. This being the case for air. 
the two applicable Equations (58) and (61) at this location can be written as follows: 

k(u)--^- + cs [u( s.t )-u (f,t )] = (ca + cr) [u(t,t) - U(o,n],      ,71) 

x=f 
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k(u)d7    ' = 'ca 
+ cr >["«'.'>-  u<0.» ']    • (72) 

By solving these two expressions simultaneously. u(f,t + l) and u(o.t + l) may be 
determined. To simplify the algebra, we will formulate coefficients from thermal 
conductance terms. 

First, the thermal conductivity of the material used for supports between x = s and x = f 

k,{u)   =  As0+ A,,    um+AS8u|n*    . (73) 

u(8,t-t- I) + u (f.t ) 
"m £       - (74) 

Further, the thermal conductance for the support 

k, (.PS, 
Cs j • (75) 

Combining Equations (73) through (75) results in the following expression for Cs: 

c, =      4J        [4AS0 + 2A,| u(s.t+1) + ZAS| u(f,l ) + A,2u*(».f + I) + 

2Aj£u<s.t + I )   u(f. t)  + At2u*(f .f)    ] (76) 

This represents the expression for the first coefficient Cj = Cs. 

Now the thermal conductance for the element of insulation at x = f is derived by 
combining the equation 

Mu)  «A0 +A,    um + At   um« (77) 

where 

u(f- 1,14- I)   +u(f ,t) 

2 

and h to obtain 

A| 

(78) 

Cj  =-ir [Ao+ "a"  "<'-'.»+ |)+ —L- u (f .t) + —^-   u2(f-l ,t+ n + 

-^-   u (f-l.t4l)  u(f,f )  H ^-    u2(f.t)] 

For this case, let the second coefficient 

(79) 

:8   =  hC' (80) 
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The third coefficient is equated to the thermal conductance of the air space established 
by Equation (44). in which Um is now 

u(f , t) -i- u (o, t ) 
"•n1 i (81) 

Therefore, 

C°   = C'  = TT [4Aao+2Aai   "«♦.»» +2Aa(u(o,t) + Aa2u
2(f.f> + «4 a 

2Aa2 u(t,t)   u(o,t)   + Aa2 u    (o.t). /g2\ 

Considering the relationship for the equivalent thermal conductance for air-gap radia- 
tion, an expression similar to Equation (47) is obtained. Rewriting Equation (47) and 
inserting the proper subscripts gives 

Cr 
c« ' r r   4 

u (f,t + l) - u (o. t + l) u(f .t + D-u (o,t+l)     l        «   "   L 

18 38. 8uS(f ,t )+ 12 67.9 x KJ3 u2 (f,f) + 3885.6 XIOS   u(f ,t ) - 

u4{o,t ) -  1838.8 u3 (o.f ) - 12 6 7. 9 X 10* uZ (o, t )- 3885.6 X lO5 u(o,t )]} . 

Equation (83) shows that C4 is equal to the term enclosed by the backets. 

The final coefficient is derived from the thermal conductance term for the element of 
insulation at x = o by a manner similar to that utilized in establishing Equations (77) 
through (80) where U     is now 

u (o,t ) +u (o + l, f+l) 
um =   2  ' (84) 

Now 

TT C9 i       F.        .      «I ..        ,   .      '4'       ..._..,     .^,   ,,     M2     ..2, 
K h    L   0      2 '   ' ■   2 ' 4 

u (o.f) u (o+l,t +-r) 4- ^f-   u2   (o + 1, t + I) ] (85) 

Recalling the simultaneous Equations (71) and (72), the partial derivatives may be 
replaced by finite terms and substituting the coefficients for the conductance and thermal 
conductivity results in the following: 

——   [u(f-l, H-l) - u (f.t + l)]   -l-C,  [u(s,t+1) -u(f,t + l) ]   = 

C,[u (f.t+l)  - u(o. »+I)] + C4      . (86) 

C, [u(f.t -l-l»-u(o,t+l)] + C4  =  -^-   [ u(o, t+l) -u(o+ l.t + I)] ,87. 
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Rearranging Equations (85) and (86) by transposing terms gives 

(cr+c8-f--£*-) [ujf.i+n] -c9u(o.t + i) = 

-^-   u(f-l. t + l )  + C,   u(.,t + l) - C4    . (88) 

C,  u ( f.t+ n-(c3+ -^-)   u(o,t+l)   =-C4 ~   u (o + l, t ). (89) 

The temperature u(f,t + l) and u(o,t + l) can now be determined from Equations (88) and 
(89). 

The next step involves determining the temperature of internal elements of insulation 
for r <x<cattimet + 1. Following the procedure employed for each of the preceding 
insulation thicknesses, these temperatures are determined from the expanded form of 
Equation (64). 

When conditions at x = r are explored, several possibilities may be encountered. These 
involve a knowledge of the rates of heat transfer about and at the junction r as specified by 
boundary conditions in Equations (62) and (65). Recalling that x = r is the location of the 
cooling system implies that a heat sink exists at this point and the rate of heat dissipated 
by the coolant is denoted by qj. Furthermore, the materials used in the construction of 
the cooling system can store heat at a rate equal to qs. Now the heat involved in both 
mechanisms must be the balance of that transferred to the junction through the insulation 
at the rate qj and the rate of heat transfer from the junction q0 so that the expressions 
for each can be written and acted upon accordingly, thus 

qi = "'"'"frl        =    1J-{A0+-^-   [u(r-l.f+l) + u(rIt+l)]   + 
x— -ir 

—?- [u2(r-l,t + t) -l-2u(r-l,f + l) u (r,t+l) +u2(r,t + l)] } 

[u (r-l.t-M )   -u(r, t+ I )] ^ 

or 

q, = -!—{4A0u(r -l,t + l)-4A0u (r , I +1) + 2 A. u2 (r - I, t + I) - 2 A. u*( r. t 4- I ) + 

A2us(r-I,t+I)+ A2u2(r-I.f + I)u(r, t+D-Aau(r-I,t+I)u2(r.t+I)-A2u2(r.t + I)}.     (9!) 

In a similar manner 

q   = Mu) — o dx 4h 
K —+r 

'- {4A0u (r,» + l)-4A0u (r + I, t + I ) +2 A, u2( r, t+1 )- 

2A, u2(r+ I, t + 1) + A2uS(r,t-H) ■»- A2u2 (r,t + I ) u(r+l, t + I ) - 

Atu(r,t+n   u2(r+l, 1-4-1 ) - A2uS(f +l,t+1 ) } (92) 
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The heat stored 

du 
'• - P< \ ^ li 

tf I 

P,   Cp   ASs )[ u (r.t + l)-u (r ,t )] (93) 

The subscripts of the p. Cp,£, and S terms refer to particular components of the cooling 
system. 

Now the three conditions that apply at the junction x = r are as follows; 

a. Qj = QQ + qs.    
then    Qj = 0 (94) 

b. cii
>% + %'    then    ^i - (% + %) = ^d (95) 

c. q. < a + q implies that u(r,t + l). although given, is incorrect since it leads to an 
"impossibility equation." The solution is to determine a new u(r,t + l) that will satisfy the 
equality qj = qQ + qs. One must understand that qjj = 0 for this condition. 

Combining Equations (91). (92), and (93) and solving for u(r,t +1) gives 

A, r A, 
—?- u3(r, t+l)+ {—2-[uU-l.t+l) + u(r+l,t +1)1)   u2(r.t+l)    + 

{[f U V. S. + 'a'V* S. +^CP3A S3 ) ] + ^ + -^ " - 4h 
i-   u2(r-l,t + l)- 

4h 
u2 (r + l, H-l)} u (r,f+ 1)  = —5- u(r-l, t + I )H    u2(r-l,»+l) + J h 2 h 

—f    u3(r-l,t + l)-l- --2- u(r+l, t + l > + -+- U (r + l, t + l) + 4n h z n 

^-uMr + l,t + l)+   [-f-^Cp    i,   S,   +/.2C     i2S2   + *   C      ^S,       )]u(r,t). (96) 

The only temperature remaining as an unknown is the temperature at x = c. The boundary 
condition for this location is defined by Equation (66) or in slightly different terminology 

Mu) 
du 

Pc CPC A 
X =c 

+ Ch [uU.t + I )  - u(v)] (97) 

f+ I 

Transforming the derivatives to finite difference terms and substituting in the expression 
for 

k(u)  =   A0+  A,   um+ A2um' (98) 
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where 

u(c - l,t +1 ) + u (c,t) 

results in the following relationship 

— u2 (c-l, t + 1 ) + 
4 

i     r Ai Ai 
h       [Ao+    2     u (c~l•,",", )+ "i"  u (C',) + 

-£■  u (c-l,t + I) u ( c,l) + —%- u2(c,t )] [u(c -I ,1 + l)-u ( c ,t +1) ]     = 

 s £  [u(c,f+ I )-u(c.t)J + Ch[u(c.t + l)-u(v)J 

To similify the algebra, let 

C,   = 4"   [AO4- -f1- u (c-l,t + I) + -^- u (c ,f )+ -^-   u^c -I ,f + 1 ) + 

A AT 
—-S-    uCc-l,t+l)   u(c,f)    ■+■  -—    u2(c,t)   J 

and 

Then 

5o   Cp     i c "►'c   ~c 

I 

'2^  -h 

(99) 

(100) 

(101) 

(102) 

'^ ,+ l1  =    c   +C   +C       tC| u(c-|-,+l) + c
2

u <c." ^-Ch"'*' ] (103) 

For this case, the weight of the coolant expended during re-entry is determined by 
summing up the q^ as determined by Equation (95). 

m       q(r,t) 
W,.     --   mp  I ^   ~h^ (104) 

The heat-transfer rate to the compartment is 

q(v, t )   =  Ch [u(c,t ) - u(v)] (iOS) 

and the weight of the coolant required at this location is 

"        q(v,t) 
wv = mp 5: —y-  (io6) 

The combination of insulation and coolant, which results in a minimum system, weight, 
is determined as described in Section 3.4.1. 
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3.4.3   Insulated Structure 

In some areas of re-entry glide vehicles such as wing surfaces where aerodynamic 
heating is much more intense on the lower surface than on the upper and the hotter 
sections internally view the colder ones, heat may be dissipated through the structure 
by radiation and gas conduction. This principle is illustrated in Figure 14. 

HEAT   SHIELD 

INSULATION 

STRUCTURE 

HEAT  SHIELD 
• o 
• v — 

Figure 14. Hot Structure - Insulated 

At x = s, the bottom surface of the wing, exposed to the air stream, is insulated to 
limit the temperature ol the internal, load-carrying structure at a level where the 
stiffness is not significantly affected. Heat absorbed by the surface at x = s is conducted 
through the insulation and the heat shield support to the surface at x = f. From this 
surface, it is transferred by radiation and gas conduction to the upper surface at x = o, 
which is at a lower temperature because of the small heat input from the boundary 
layer. The problem in this case involves the application of sufficient insulation to obtain 
the desired temperature at x = f. 

The conditions for the boundary value problem may be stated as follows: 

In the region of the insulation 

Uf(x,»)=G(u) s<x<f,f>o, 

I 
Ux   (x,l)   = 

Mu)       9       r 
) 

where the heat generated at the lower surface 

qg   =   F;(f  ) 

u. {x., ' = -7-. I < c a-•■ cr )[" (f,t + l)-u(o,f+ 1)1- 
* k(u) "■ L J 

Cs[u(s,t+I) -u(f,t+l )] } 

U (x, o)  = cons tant 

f > 0   , 

X   =   s,  t > o  , 

X    =   f,  f> o , 

s <   X < o ,   t =   o. 

(107) 

(108) 

(109) 

(110) 

(111) 
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The equation that applies at x = o is 

(C0 + Cr )[ u( f, t + l ) - u(o, ! + !)]= qr  -Tg x   = o ,   t >o . ^^ 

Here qg is the heat generated at the upper surface where 

Tg   = Fz(t) x = o , t> o • (H3) 

After first assuming some insulation thickness, the temperatures within the insulation 
for time t + l are calculated after first transforming Equation (107) to the form in 
Equation (25). 

Now the temperature at x = s for time t + l can be determined from Equation (108) 
where 

a x 
<Jn - 1 9       qr (114) 

x-= s 

The term qr is that heat radiated to space from the surface of the heat shield 

Neglecting the temperature of heat sink in space gives 

qr   - a-Fe Fa  [u',(s,f + l) +  I838.8u3(s.t + I)+I26 7. ^XI03u2(s,f + l)^- 

3885€xl09u(s,t+l)+   446 5.4XlOr   j 

and 

z 

(115) 

k(u)   =   A0 + A,   u,,,    + A2 um
2 (116) 

where 

Um= u.s,, + n+U(,+i,. + l)  . (117) 

Equation (108) can be written as 

-j^-{ A0-(-Y1- [u(s,f + l) + u(s+-l,t + l)]+-^ [u(»,t+l)+u(s + l,t + l)]    } 

[ u(s,t+ I ) - u Cs + l.t + rj] = q     - <r Fe Fa   [u
4 (s,t+-1 ) + 1838.8 u3 (s ,t + I) + 

126 7. 9X103   u2(s,f + l)+   388 5.6XlOSu(s,t+l) + 44 65.4XI07] (118) 
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Rearranging terms 

afW  Fa   u4(s', + l,+[^r +1838.8 o-F. Fa]u3(s,f+ l)+ [^j   + -^-   u(s4-l. t4l)   - 

-^-u(s.4-l.l+ I) 4 l26 7.9XIOSo-Fe Fa]u2(s,t + I) + [-^2. + ^1- u2 ( s-I- I, f-M )- 

^- u8(s+I, f+ !)■(- 3885.6 X lO* O" Fe Fa ] u ( s . f + I ) = q     +   ^_ u (s + |, t + l) + 
2h 

-ji-  u2(s+l,t + l)-»--^-u3(s + l,  » + I)-4465.4XI07 ,119) 

Equation (119) can now be solved for u(s,t ' 1). 

Recognizing that Equation (110) is identical to Equation (58) then 

(c, +C3H -) u(f,f+ IJ-Csu(o,t + l)= -r2  u(f-l,f+l) + CF u(s,t-H) -C4 h 

where 

Ci is given by Equation (76) 

C2 is h times Equation (79) 

C3 is given by Equation (82) and 

C4 is specified by Equation (83). 

Now Equation (112), by the same process, can be written as 

C3u(f,t4l)-C3u(o,f+l)=C5-q"g   -C., 

where 

C9 = [u(o,f+l) -u(v, »+!)] Cr = crFeFa [u''(o,t)+ 183 8.8 u3(o,t) + 

l2 67.9XI03u2(o,t)   +   3885.6XI05  u(o,t)+  4465. 4   XIQ7]- 

Equations (120) and (121) are solved simultaneously for u(f,t ' 1) and u(o,t-:-1). 

(120) 

(121) 

(122) 

If qg and qg are known for all t, then u(f) can be determined for all t. The process is 

repeated until the desired u(f) maximum is obtained. 
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4.0 DIGITAL COMPUTER SOLUTIONS 

4.1 General 

Before problems of the type outlined in Section 3.4 can be solved by digital computer 
techniques, a concise mathematical statement must be formulated outlining all program 
requirements. The purpose of this statement is to give the programmer an insight into the 
type and scope of the problem to be solved by describing the algebraic relationships 
approximating the set of differential equations. 

The format for this section includes the construction and usefulness of networks, 
required program inputs and outputs, the solution procedure, and a program flow chart. 
The type analyzed in Section 3.4.2 will be used to illustrate the manner of presenting the 
problem. 

4.2 Mesh Networks 

Once a configuration for the thermal protection system has been established, an array 
of regularly spaced straight lines that are mutually perpendicular to the heat-flow path 
are constructed within the boundaries starting from some arbitrary but fixed point u(xo, 
t0), and positive number h, the mesh size for the variable x. In addition, a time mesh 
size p is chosen and the mesh consisting of another set of parallel lines constructed 
normal to the t coordinate. The method of selecting an hand pis discussed in Section 4.4. 

The network for the problem in Section 3.4.2 consists of three mesh as shown in 
Figure 15; one for each section of thermal insulation at s <x<f,o<x <r, and r < x < c 
for t > 0. Interior mesh points are those lying within the boundary mesh points at t = o, 
and x = s, f,o, r, and c. 

Now the temperatures at ail interior mesh points can be found by solving the appropriate 
difference equation mn times, wheremnismerely the total number of interior mesh points. 
Boundary mesh point temperatures are either given or can be calculated from the relation- 
ships which apply at a particular interface. 

• 
4.3 Program Input 

This particular portion of the problem statement includes all known data that are 
required to obtain a solution. Referring again to the case in Section 3.4.2, this informa- 
tion can be listed as given in paragraphs 4.3.1 through 4.3.11. If sufficient data are 
involved, presentation in tabular form might prove advantageous. 

4.3.1   Surface Temperatures 

The temperature of the surface is given as a function of time by listing a sufficient 
number of temperatures, u(s), and related times, t, to adequately represent this function. 
Since an exact, concise mathematical formulation is usually not possible, interpolation can 
be employed to approximate values for u(s,t), which lie between given points. Example: 

Time increment, A t = 1 minute 

Total flight time, tr = 200 minutes 

Surface temperatures, u(s) = 80.0oF. 85.0oF, 90oF .... 
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Figure 15. Mesh Network 

4.3.2 Initial Temperatures 

Since three mesh networks are necessary to depict the approximate solution for the 
case in Section 3.4.2, a general temperature term can be introduced denoting the space 
and time position associated with a given or calculated temperature. Therefore, u(i,j,m) 
identifies a particular interior mesh point where i refers to the spatial mesh column in 
any mesh, j is a particular mesh, and m the time position or row in the mesh. 

The initial temperatures can now be written as u(i, j,o) and are given for all i,j. 

4.3.3 Spatial Mesh Size 

Sufficient accuracy will usually be obtained if the spatial mesh size, h, is made small. 
Therefore, the number of interior mesh points and the number of equations to be solved 
will generally be large. Some compromise is involved in selecting a value for h that will 
permit satisfactory accuracy with a reasonable number of interior mesh points. 

4.3.4 Temperature at x = r 

The temperatures of the spatial mesh column x = r are equal to the saturation 
temperature of the coolant used as the expendable heat sink and is a function of ambient 
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pressure, flight altitude, or the pressure within the system. Example: 

For 0 < t < 150: 

Time increment. At = 150 minutes 

Total time, tr = 150 minutes 

Temperature, u(r,t) = 80oF 

For 150 < t < 200: 

Time increment, A t = 5 minutes 

Total time, tr = 50 minutes 

Temperature, u(r,t) = 80.0oF, 85<>F, WF . . . 

4.3.5 Densities 

The density of each material used in the construction of the thermal protection system 
is as follows: 

PyP2.Pv... 

4.3.6 Thermal Conductivities 

The thermal conductivity of each material used in the construction of the thermal 
protection system as a function of temperature is also required. Example: 

J = 1: 

u = 100oF, 200oF. 300oF . . . 

k(ii) = 1.0, 1.1, 1.2 .. . 

4.3.7 Specific Heat 

The specific heat of each material used in the construction of the thermal protection 
system as a function of temperature is also required. Example: 

J = 1: 

u = 100oF, 200oF, 300oF . . . 

c (u) = 20.0, 20.1, 20.2 . . . 

4.3.8 Temperature at x = v 

The temperature of the compartment atmosphere is a known constant equal to u(v). 
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4.3.9 Cross-sectional Area 

Every member contributing to the internal flow of heat that does not have the same 
cross-sectional area as the representative element chosen is given as Sj. 

4.3.10 Length of Heat Transfer Path 

The thickness or length of every member in the direction of heat flow is given as /,. 

4.3.11 Coolant Enthalpy Change 

The heat sink capability of the expendable coolant is a function of the ambient pressure 
at which the conversion from liquid to a gas takes place. This pressure can generally be 
assumed to be equal to that existing at flight altitudes; therefore, it can be related to 
flight time. Example: 

For 0 < t < 150 minuses: 

Time increment. At = 150 minutes 

Total time, tr = 150 minutes 

Enthalpy.   hfg = 1050 ^Itl 

For 150 < t < 200: 

Time increment. At = 5 minutes 

Total time, tr = 50 minutes 

Enthalpy, hfg = 1049, 1047 . . . 

4.4   Program Output 

This section lists the desired information resulting from an IBM 7090 Digital 
Computer solution of the problem that is identified in Section 3.4.2. 

4.4.1 Time Mesh Size 

The size of the time mesh required to satisfy stability criteria must be determined. 

4.4.2 Thermal Property Coefficients 

The coefficients of the expressions for thermal conductivity (A„., A. ., A„.) and 

specific heat (B«., B1.) for each material are input requirements. 
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4.4.3 Temperature Printout 

The temperature at spatial mesh points s.f.o.r.andc at m times and the temperature 
at all spatial mesh points at the times indicated will be of interest; for example (CQ t - 

^O HOO 'iSO tm)- 

4.4.4 Heat Removal Rates 

The instantaneous rates of heat removed by the re-entry and compartment environmental 
cooling systems q   and q   at m times are needed to determine the Q   and Q . 

4.4.5  Total Heat Removed 

The total amount of heat removed by the re-entry and compartment environmental 
cooling systems, Q    and Q , are required to determine the coolant weights. 

4.4.6  Total Amounts of Expended Coolant 

The total weights of coolant expended by the re-entry and compartment environmental 
cooling systems, W   and W  , are used to calculate total system weights. 

4.5   Problem Solution Procedure 

This section describes a routine for determining the "solution of the problem statement 
outlined in Section 3.4.2. If the operations are performed in the sequence listed, the 
temperature distributions, rates of heat transfer, total heat removed, and the weight of 
the thermal protection system can be calculated. Basically, the procedure is divided 
into two sections; first, a sub-routine, which generates preliminary information such as 
expressions for k;(u) and c (u), the time mesh size, p, and the transformation of certain 

input data that are expressed as a function of flight time so that it coincides with the 
calculated time mesh size; and second, the order of solution of the finite difference 
equations derived in Sections 3.3 and 3.4. The step-by-step procedures are given in 
the subparagraphs that follow. 

4.5.1   Thermal Properties 

With the thermal conductivity k. and the specific heat Cp. as a function of temperature 

given, determine the relationships 

"j   =  Aoj   + *.) u + Azi  u2  • (123) 

«»Pj = Boj   -•■ B.j u (124) 

by the method of least squares as presented in Appendix II. 
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4.5.2  Time Mesh Size 

4.5.2.1 From the input of surface temperatures as a function of flight time, pick out the 
maximum us. 

4.5.2.2 Solve for the maximum k by inserting us maximum in place of u in the expression 

ki   =  Aoi+  AMU   + A2tu2 (125) 

4.5.2.3 Solve for the maximum Cp by inserting us maximum in place of u in the expression 

CP| 
=    Boi "'■Bli  

u (126) 

4.5.2.4 From the input of material densities, select p, and insert together with h, kj. and 

D     E     5h^   CP| 

Cp. into 

2 k (127) 

4.5.2.5 Repeat steps in paragraphs 4.5.2.2 through 4.5.2.4 for j = 2 to determine P2. 

4.5.2.6 Select the smaller value, either p, or p^. and convert it to the nearest preceding 
integer, which is an exact divisor of the total flight time. 

4.5.2.7 Transform the initial set of surface temperatures, u(s,t) into a new set with a 
time increment equal to p by the process of interpolation. 

4.5.2.8 Repeat step in Section 4.5.2.7 for u(r,t) and hf  (r,t). 

4.5.3   Solution of Finite Difference Equations 

4.5.3.1   Determine the temperatures for all interior mesh points U.. *, U„1, . . ., U ,; 

U.«, U^o* • • •• U „; U „, U„„, . . ., U „at time m = 1 from the following equation: 

'"«''       ''Hf! T    ?o«    h2(B  .+B.  \J-m) l.(A'i ■,"2A2J   uii ^iim-fci     '^iim    ■ 
20P]   hMB^+B.j   Uijm) 

(Ui2
+..i.m -

2Ui + 1.j.m    "i-.j.m  +Ui-1.i.m) + 4(A0i+Alj   Uijm+ 

A2i   "iim>   (Ui+1.j.n,   -2Uijm+  ^-..j.m   >] (128) 

* Temperatures at specific locations are denoted by U in this section. 
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4.5.3.2   Determine the temperature at the exterior mesh points x = f and x = o at time 
m = 1 from the following equations: 

C3 

where 

Uf,m*i "lC3+ — j   uo,m*i   =-C4 J-    Uo*i,m*i • 

(129) 

(130) 

C.   '      4
S]4       (4A04+2A,4UStm^,  +2A14Ufim+   Aa4 U*jmtI 

2A"U
S.m*.   Uf.m+^24   Uf

2
im) 

Ca=   A0+^-   Uf.tim + |   +  4LUf)m+_^.   Uf.|im + 

(131) 

^   Uf-1.rn,,   Uf.m+-T-   Uf!m    • (132) 

C,=       ' S      —r(4Ao9
+2A.8      ..m+ 2A1S U0im+A29 U*jm   + 

4^ 

2S   Uf.mUo.m +   AZ5    Uo."m      >     ' (133) 2 A,,   tl.   „„IJ,, ,„.   -4    A,.    U„2„      )      , 

C. =   O-F, 4 « Fa  (Uf4.m+ l838   8   Uf.3m  +  ^&7-9  * 'O*    Uf2.m
+ 388 5.6 X I09 Ufim - 

Uo%- '838   8 U0
3
iril-1267.9 X I03  U^m  - 3885.6   X   ►O9   U0>m)  , ^^ 

4^   Uo2*..n,*. (135) 

4.5.3.3  Determine the rate of heat transfer at time m = 1 to and from and the rate of 
heat storage at the exterior mesh point x = r. Now the rate of heat transfer to r 

qi» =i(4Ao   Ur-i.m + l   -4
AoUr.m*.  +2A,  U ^ , _ m + , - 2 A, Ur% ^, + A, U?.,. m+1 + 

AzUr-i,m*i Ur.m*i   ~ Az^-i.m*, Ur2.(i>*i   " A
2Ur* „,,., )   , (136) 

,'o9
=-is(4AoUr,m»|-

4AoUr,1.m+1 + 2 A, U^^,- 2 A , U^,, m+1   +A8U?imtl + 

A« Ur,m»iUr»i.n.»i  ""At Ur,n»*iUr*i,m»i    "A « "r** 1. m ♦ 1   )    . (137) 
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(138) 

where U , m + 1 is given. 

4.5.3.4  Evaluate conditions at x = r and time m +1. Three possibilities exist. If 

a- 'i.   I   <'o5+ '.s    • (139) 

then no heat is removed by the cooling system, or q^- ■ 0. and U , m + 1 = U . m +1 

(given by input). 

b. When q.9    >  <l09+ «l,g    . (HO) 

then the heat removed by the cooling system is 

qd9    '   "ia -«"os-1-".,  ' (141) 

and U , m + 1 = U , m + 1 (given by input). 

c. Finally, if "i,    <   qoB + q t8      • (142) 

then no heat is removed by the cooling system (q^e = 0) and U .m+l^U .m + 1 (given 

by input). When condition (c) applies a new U . m + 1 must be determined from the 

following relationship, converting Equation (142) to an equality 

.Aiu» +   f-^Mu +U )]   0* +   (Jl*-^±Alh. + 2h    ur,m«.| +   L2h    ^ur-i,«n»i +ur*i,m*i;j   "r.m*!   +   V p 

2A« A! A_g t At    .. t \ f A0 

-J^ "• j; ^J"   ur-i,m*i 4h    ur*itn<»i;ur.m*i    -   \—£   ^r-\,m*\   + 

A,        2 A g        s A0 A a ' 
~^   Ur-i,m*i  ■*■ "^iT Ur-t,m*i  +     h     ui> i,m ♦ I +     4h      ur*i, m ♦ i   "•" 

5A>9 <=pg/5Ss 

P 

Ur.m  )    =   0    • (143) 

4.5.3.5 Determine the temperature at the external mesh point x = c for m + 1 from the 
following equation: 

where 

Uc.'n + •    C    Cx+Cz+C       (C'   "c-..»»^   + Cg Uc ,„+   Ch Uv )       . (144) 

C. s-r   (Ao + -T-Uc-..m*.+-|L   Uc.m+ 4 c-i,m ♦ 

A8 Ag 2       \ 
-g-Uc-i.«,*,   UCiln   +   —    \icm   )     , (i45) 
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5/97 cp7 -£7 

P (146) 

and C^ is the film heat-transfer coefficient at the wall. 

4.5.3.6 Determine rates of heat transfer to the re-entry cooling system, qr, and 
compartment environmental control system, qv, at time m = 1. The former was 
calculated in Section 4.5.3.3. Now qv can be established from the following: 

qv.m + 1    
=   Ch < Uc.m*-  "„    ). (147) 

4.5.3.7 Determine temperatures at all mesh points and heat-transfer rates q^,. and qv_ 

for times m = 2, 3, 4, . . . , n by repeating steps in Sections 4,5.3.1 through 4.5.3.6. 

4.5.3.8 Determine the total heat removed at mesh points x = r and x = v during the 
mission thus 

n 
Q,.   =   "P I      qr (148) 

and 

m=i 

n 
np    Z 

m = I 
v (149) 

4.5.3.9  Determine the weight of the coolant expended during the mission at mesh points 
x = r and x = v thus 

n           qr 
Wr   =   np    Z        (150) 

" qv 
wv = np   I    IT- (i5i) 

m = i        '9r 

This completes the solution of the problem. 

4.6   Program Flow Chart 

The program flow chart presents in a concise manner a step-by-step solution 
procedure for a complex problem involving a number of operations. Two flow charts 
outlining the manner of solving the relationships for the case in Section 3.4.2 are shown 
in Figures 16 and 17. When the path connecting the events is traced, the sequence of 
introducing or storing terms is indicated as well as the origin of each, input. A clearer 
picture of the method of solution may be obtained if the flow chart of the program is 
used In conjunction with the mesh network. 
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At this poinr some comments regarding the solution of certain of the equations in 
Section 4.5 should be in order. In general, the majority of the equations involve the 
straightforward application of the principles of algebra that result in a rather obvious 
solution. On the other hand, the solution of a polynomial, such as Equation (143), involves 
some knowledge of the nature of the one valuable root. Of course, the root of interest 
must be real; however, this condition by itself is certainly not a sufficient one since it 
is entirely feasible that the solution would yield more than one real root. Therefore, a 
second condition should be included to further restrict the number of possible results. A 
possibility here is to, in some fashion, bound the solution. For instance, if some insight 
into a limited range for the one valuable root can be applied by confining the neighborhood 
of the solution within finite limits, the probability that more than one real root will lie 
within these bounds is low. In fact, the extremes usually can be defined so that one valuable 
root will almost always be the only one that satisfies both of the previously mentioned 
restrictions. 

GIVEN GIVEN 
Mu), Cp(u) USm 

CALCULATE CALCULATE 

Bo8, 

SELECT 
U£m    max. 

CALCULATE 
k     max. 

CALCULATE 
Cp2    max. 

i        GIVEN 1 CALCULATE DETERMINE DETERMINE 

L_ Pz 1 P a 
- 

P Usm for   ea    P 

PROGRAM 
INPUT 

Figure 16. Program Flow Chart for Subroutine 
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Figure 17. Program Flow Chart for the Insulated and Cooled Compartment 
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5.0 RESULTS 

5.1   System Thermal Analysis 

5.1.1   General 

Numerical solutions for each of the three problems presented in Section 3 would 
represent a considerable effort in view of the number of parameters involved. Such a 
treatment of each case is not within the scope of this section; instead, the application of 
the finite difference equations and the method of optimizing the design of the thermal 
protection system will be illustrated for only one case. 

The example selected was that designated in Section 3.4.1 "The Insulated and Cooled 
Structure." This problem is considered a compromise between the lengthy and, possibly, 
less meaningful solutions that are required for the case in Section 3.4.2, and the more 
simplified, straightforward approach applying to the case in Section 3.4.3. To clarify the 
results, we modified the case in Section 3.4.1 by terminating the solution at x = c (see 
Figure 11). In addition, a thermal-conductance term that depended on temperature was 
introduced to include the effects of an insulation package on the heat transmitted to the 
cooling system. As a result. Equation (28) was modified to incorporate an additional 
term. 

5.1.2   Program Inputs 

This section lists most of the program inputs in tabular form as suggested in Section 
4.3. In the case of surface temperatures of the vehicle during re-entry, these tempera- 
tures can be presented more conveniently in a graphical manner because of the number 
involved. Optimum insulation thicknesses will be determined for four histories of surface 
temperatures U(s,t), shown in Figure 18, which are typical of those experienced at 
various locations on the outer heat shield. The number of curves and the maximum 
temperature of each were selected to enable a parametric survey and to facilitate the 
presentation of data. A listing of the IBM program input data is available in Table 1. 

This table includes the thermal property data determined from the physical makeup 
of the thermal protection system. Coefficients for all polynomials were then determined 
by the method in Appendix II. The origin of most of this information is included in the 
references. 

Three thicknesses of insulation were selected as a minimum for demonstrating the 
influence of this parameter on the weight of the system. The smallest thickness, 
arbitrarily chosen as 0.2 inch, was established in view of the magnitude of the spatial 
mesh size. The time mesh size was calculated by employing the stability criteria 
discussed in Section 4.5.2. Once this was established, the surface-temperature histories, 
U . through U   ., could be tabulated by listing the temperatures that corresponded to 

each time step. 

This completed the input requirements for solving the problem. 
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TABLE 1 

PROGRAM INPUTS 

Inputs 

Insulation Thickness 
(inches) 

0.6 0.8 1.0 

Number of Internal Mesh Points (i) 6 7 8 

Coefficients of the Polynomial k(u) 

(Insulation): 

Ao 
Al 
A2 

0.14 

- 0.177 x 10"3 

0.103 x 10"6 

0.14 

- 0.177 x 10'3 

0.103 x 10'6 

0.14 

- 0.177 x 10"3 

0.103 x 10'6 

Coefficients of the Polynomial c (u) Bo 0.23 0.23 0.23 

Bl 
0 0 0 

Insulation Density (p) 12 12 12 

Air Space Conductance C (u) A0a 
1 

0.45 0.45 0.45 

la 
1 

0.4133 x 10"3 0.4133 x 10'3 0.4133 x 10"3 

Heat Shield Conductance C (u) D0 
Dl 
D2 

15.642 15.642 15.642 

- 19.5 x 10"3 

12.61 x 10"6 

- 19.5 x 10'3 

12.61 x 10'6 

-19.5 x 10'3 

12.61 x 10'6 

Insulation Package Conductance 
Cf (u) 

Eo 
E1 

5.33 x 10'2 

8.667 x 10"5 

4.0 x 10"2 

6.5 x 10"5 

3.2 x 10"2 

5.2 x 10'5 

E2 0 0 0 

a F c 2.884 x 10'10 2.884 x 10'10 2.884 x 10"10 

Spatial Mesh Size (h) 0.2 0.2 0.2 

Time Mesh Size (p) 0.5 0.5 0.5 

Number of Time Steps (m) 161 161 161 

Initial Temperatures 
(except at x = c) U 

70 70 70 

Temperature at x = c (U „, U    , . . •) 200 200 200 
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5.1.3   Program Output 

Numerical solutions to the problem were obtained by following a procedure similar 
to the one outlined in Section 4.5, which led to many of the outputs suggested in Section 
4.4. 

The first results are graphical representations of the temperature distribution through 
two thicknesses of insulation. 0.6 and 1.0 inch, at the re-entry times specified. The 
surface temperature history, which applies in each case, has been noted and the curves 
are presented in Figures 19 through 26. 
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Several interesting observations can be made from these results. For 15 minutes after 
the start of re-entry, we note that the temperature gradient is zero at some point within 
the insulation. On either side of this point, the gradient indicates that heat is conducted 
from both the outside and the inside faces of the insulation to internal elements. Once the 
temperature of the external surface begins to increase, heat is conducted through the 
heat shield and the edges of the insulation package to the inside face of the insulation. The 
response of this path is very rapid due to the negligible heat capacity of each of these 
components. On the other hand, the heat capacity of the insulation cannot be neglected; 
therefore, the transfer gradient through the insulation lags the transfer gradient through 
the heat shield supports. Simultaneous conduction along both paths gives the appearance 
of a heat generation term at the inside face of the insulation. 

As the time from the start of re-entry increases, the point of zero temperature 
gradient moves to the right until it passes through the insulation. At this time, heat is 
being transferred in one direction only. 

The assumption that the temperature of the primary structure is initially 130oF above 
the temperature of the insulation influences two directional heat flow. This assumption 
does not affect the temperature distribution beyond a 15-minute period for all but one 
case, and, in general, any contribution of this assumption to the results is rather insignifi- 
cant. 

One will also note that the heat shield plays a very small role in attenuating heat 
transfer to the primary structure. As mentioned previously, its major function is to 
transfer aerodynamically generated heat back across the boundary layer. The equivalent 
conductance of this honeycomb panel is relatively high; hence, the temperature gradient 
across its thickness is small. 

In comparison, the air space between the insulation and the primary structure offers 
considerable resistance to the flow of heat as Indicated by the temperature drop between 
these two surfaces. 

The rates of heat transfer to the cooling system are shown in Figures 27 through 30 for 
each thickness of insulation as a function of re-entry time. For each, the coolant require- 
ments are computed from the value of the integral under each curve. The amounts of 
heat absorbed for each computer run are given In Table 2. 

TABLE 2 

HEAT ABSORBED FOR COMPUTER RUNS 

Total Heat Absorbed (BTU per Sq Ft)                    1 
Temperature History 

Insulation Thickness 
(inches) 

Usl Us2 Us3 U
S4 

0.6 454 355 149 44      | 

0.8 325 248 101 27 

1.0 232 174 68 15 
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The maximum rate of heat transfer is shown in Figure 31 and the coolant requirements 
are shown in Figure 32 as each is affected by the insulation thickness and the maximum 
equilibrium temperature. The use of this latter term as a parameter was justified, since 
all temperature histories are of the same duration and the general shape of the curves 
is similar. 

Figure 32 indicates the heat transmitted to the coolant is nearly zero if the maximum 
surface equilibrium temperature is not high for some insulation thicknesses. For this 
case, the elimination of the cooling system might be considered. 
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5.2   Insulation and Coolant Tradeoff 

If the coolant requirements, as shown in Figure 32, are combined with the weight of 
the insulation, a relationship between the total weight of the thermal protection system 
and the thickness of insulation can be demonstrated for a number of outer surface 
temperatures. These results are shown in Figure 33 in which the maximum surface 
temperature is used as a notation of the particular history (refer to Figure 18). An 
examination of these results reveals that the selection of a thickness of insulation can 
be made, which, when combined with the amount of coolant required, will result in a 
thermal protection system of minimum weight. 

This type of presentation may be conveniently used as design information, since the 
surface of the re-entry vehicle can be sectioned into temperature zones. The boundaries 
of these zones can be judiciously assigned, based on temperature distributions and the 
surface temperature history for the re-entry trajectory, which results in maximum 
heating. In the case of glide vehicles, temperature gradients on the surface are relatively 
insignificant; hence, the total number of zones would be few and can be based on a modest 
deviation from an average temperature. As a result, a procedure is established that finds 
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application as a practical design tool. The more problematical aspects are those that are 
associated with the derivation of analytical relationships and the programming of these in 
^ach case. These areas were emphasized in this study. 

INSULATION   THICKNESS 

( INCHES) 

PEAK  EQUILIBRIUM 
TEMPERATURE 

(DEGREES    M 

Figure 33.  Insulation - Coolant Weight Tradeoff 
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APPENDIX I 

DERIVATION OF FINITE DIFFERENCE RELATIONSHIPS 

In solving a differential equation of the form in Equation (13), one can express 
conveniently the temperature distribution, Ux, as an nth degree polynomial containing 
(n + 1) arbitrary constants as 

(0              (z)            (3) (n) 
ux ^ ao +ai x     + °2 *    H-as   x      +    +•««„« (152) 

If x is replaced by the variable 

x - Xo 
w = ~ir~ (153) 

where h is the interval between two successive values of the argument x, the differences 
of U.. may now be used to determine the values of the coefficients a-, a., a_, . . . , a v u     1     z n 
thus 

(i)                   (2) (n-i) 
AUV    =a1+2a2v      +3a3W       +    "l"nan 

.2 t'l (n-2) 
A Uw   =   2-I-a2 + 3-2a3 w      +• ••■   +n(n-i)an 

, fn    si / (154) 
A Uu    =3-21a    +       +njn-i)(n-a)<il ¥ n 

AnUv =   an   In/) 

Since these expressions must hold for all values of x, the coefficients can now be found 
by setting v = o. Therefore 

A2 U- An U0 
ao   =  uo •al   =   Auo   ■ a2   = —Y7-    •    •   an  =      n/    • 

Substituting the values for the coefficients into Equation (152), Gregory-Newton's 
interpolation formula is obtained thus 

(i)                  v(2)       _ v(n)        n 
Utf  = U0 + »' 'AU0 + -^   Az U0+      + -jy   A    U0   • (^5) 

Now the value of a function of x may be found by replacing the function with this inter- 
polating polynomial, then differentiating 

df(x)  ^     d U x dUv        dv    | 

dx    =     7*     "    dv     dx  I x = r " ^156^ 
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The derivative of Equation (153) gives 

dv I 

dx h 

Substituting Equation (157) into Equation (156) gives the derivative 

df ( x) _|_      dUv 

dx h d v 

(157) 

(158) 

An approximation of the second derivative of f (x) can be found by again differentiating 
Equation (156) 

d2f(x) d2Ux d       rl dUyidv 

—i— s    zi    = -zr i-—77 J -7: (159) dx dx dv h dv dx 

dv I Recalling that     =  , Equation (159) can be rewritten 
dx h 

d2 f (i) I dZ   lJv 

.       2 " .2 .2 (160) 
d x h d v 

Applying the expression relating the derivative of the function to the derivative of the 
interpolation formula (155) gives the first derivative 

-H-TT-l      =^(AU0-^UO + ^UO-^AX + .-(161) 
du    ^   _l_   r     dU 

d x    ~      h     L     d v v = o 

Clearly, the first approximation is 

du    \ A U /    du    \ a u0 , 
v   dx      ' h h 10 

x= x0 

or in general 

(4r) s T (Ui*' -ui' (162) 
This approximation is most usefully applied to the boundary condition where the 
derivative does not exist for the i-1 element. 

The finite difference approximation for the time derivative is found in a similar 
manner resulting in 

(TT")        S T" (U'» + '-U'")   • (163) 
o 

Here p is the difference between two successive values of the argument t. 
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Another interpolation formula can be developed by averaging the forward and backward 
interpolation formulas of Gauss. The forward interpolation formula expresses the 
temperature 

U   =    U0+ vAUy    +-^    «(2,A2U0+   ^   ( v+l)(S,  A3 U1/2 + 

I (an-i)     zn-t 
( v  -+• n -i ) A Ui 

( zn - i) / /* 

( v + n- i) A       U, 
(zn)/ 0 (164) 

In the backward interpolation formula 

-L (v +()(2)A2u0 + -L  '--■.«'>*» 
^        2 / 0 3 / 

u = U0 + wAU,i,   + J- ( v +l)^'Ai U0   + -!-    (v + l)i;"A   U.i/,  + 0 "Z 9   J "T/ /' 

•  UrO^n.,     ^  I    ... _1
(^n+,, 

2n ♦ i 

(v +n r" A'    U0  +  :    ( w +n ) 
(2n)/ (2n+l)/ 

A U-^   +  (165) 

Averaging Equations (164) and (165) gives 

AU.+AU,,           |        ,    .                ,            z          A5U_2+ASU_I 
" = "0 + "  J 5- + ^- v2A2U|   + -^-v (v   -I)  ^ '-   +■••.   (166) 

which is the central difference formula of Stirling. 

If the relationship (158) is applied to Equation (166), an approximation of the first 
derivative may be determined 

/du\ _}_ r   dUv   -i        |       f AU_|+AU0 |      ASU.2+ASU., \ 
^dx/ -hLdv     J=—    \ i T 2 +••■/•       (i67) 

Again, using the first approximation gives 

/duv ^   AU.,    +AU0 U,-U-, 
("^l   x     " ^ '~^r- (168) 

x = Xo 

Now the derivative squared term is obtained simply by squaring the right-hand member 
of Equation (168) 

(77}       =Tb' (U|2 "^ u-'+u2-' ' (169) 
X = XQ 
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From Equation (166). the first approximation of the second derivative is 

^-A    (AU.,)   =  -L   [(u,-U0)-(U0 -U.,)] a 

d2u x I (a   u  \ i 
—T") «   -T   <u.  -2Uo  +u.1> 

X -  XQ 

(170) 

This completes the derivation of all finite difference equations that are required to solve 
the general heat-transfer equation and the boundary conditions in Section 3. 

If the heat diffusion Equation (13) could be solved conveniently by a Fourier series 
expansion, we could show that stability of the solution depends on the ratio 

M    = kP 

/>  cph2 h* (171) 

Since this would be somewhat lengthy to show, it will just be noted that an examination 
of this parameter is required prior to attempting a solution of the problem. If, for 
instance, M < 1/2, each term in the solution of the difference equation will decrease 
exponentially with time. This means that round off error, although carried to subsequent 
rows, would eventually vanish. On the other hand, if M > 1/2, some terms would increase 
exponentially with time, and round off errors would tend to be amplified as the solution 
proceeds. Therefore, once an h has been selected, it becomes important to choose a 
value for p such that M < 1/2 to insure stability of the solution. 
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APPENDIX II 

METHOD OF LEAST SQUARES 

This section reviews a method of determining the constants that appear in the equation 
that is selected to represent thermal conductivity and specific heat data. It is the most 
useful method and the one most frequently applied since it has the advantage of producing 
a unique set of values for the constants of the polynomials. Moreover, these constants 
give the most probable equation in the sense that the computed values of k(u) or c (u) 
are the most probable values of the observations, since the residuals are assumed to 
follow the Gaussian law of error. In other words, the principle of the method of least 
squares asserts that the most representative curve is that for which the sum of the 
squares of the residuals is a minimum. 

Suppose the given set of observed values (k., u.), (i = 1, 2, 3, . . . n), can be represented 
by the equation 

k = ,(ü, (172) 

containing r undetermined constants. A,, A„, .... A . Then the n    observation 

equations, for example 

k. = f (u. )   , 

are to be solved for the r unknowns. If r = n there are just enough conditions to determine 
the constants; if n < r, there are not enough conditions and the problem is indeterminate; 
but, in general, n>r, and there are more conditions than there are unknowns. In the 
general case, the values of an m which satisfy any r of these equations will not satisfy 
the remaining n - r equations, and the problem is to determine the set of values of Bj^ 
that will give the most probable values of k. Let 

vi    =  ki   - k (173) 

be the residuals or deviations of the computed values from the observed values, where 
kj is the value of k obtained by substituting u = Ui in k = f(u). On the basis of the Gaussian 
law of error, the probability of obtaining the observed values ki is 

n 

,        h       x" -h     >    Vi 
P    =  (ST-)     ' '-'        ' (174) 
n n       » 

P is a maximum where      X   »j is a minimum. Since     s    = £   v-        is a function 
i = i 

of the r unknowns. A,, A2, . . . , A  , it follows that the necessary conditions for a 

minimum are 

da    =0.    -^- = o, ,-^-  = 0 . 
777'"•     aA2' '^ ■ u • (175) 
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Moreover, each Vj is a function of am; therefore. 

^s         _         d          ,2.2. .2» (v.     + v,    +       +   V-,   ) 
dAm dAm i 2 

or 

d s d v. d v~ 
=   2 «.      — "I-  2 v,     *   4-     -t-av. 

<3 A, '       dAm ~   *       dAm "   dAm 

-TT-   =    2   Z     v,   -^-    ,   ( m =  1.2.   ■ ■ • .  r )   • (176) 
<3 A, j= , d Am "•        ' 

These formulas. Equation (175). are called the normal equation. 

If the r functions in Equation (175) are linear in the r unknown A,, A„,.. .,A .then 

these equations can be solved immediately. This will certainly be the case if f(u) is a 
polynomial. Let 

f (u)   =   I     AjU '" (177) 

i = i 

so that 

"i    =       I     AjUj -k j   • (178) 

j = " 

Then ——!— = U: m~l , and the normal equations assume the form, with the aid of 
dAm 

Equation (176), 

I    (l      AjU,'    '-kj   )   ui
m",  =0.  (m=l.2.--  r  )• (179) 

i = i      j = i 

One should note that the equation that is obtained by setting m - 1 is 

'i = 0 (180) 
n 
Z      V:    =    O 

I = I 

Rearranging the terms in Equation (180) and collecting the coefficients of A, gives 

' "       j + m -2  . " m   , 
I    (  I   U, ) Aj   = I    U, kj (m=  l.2t--,r    )• a81) 

j = i      i= 1 i = I 
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Now the r linear equations can be solved for the values of the r unknowns A., A?, A«, 

. . A . For example: 

U 

Now 

1 

2 

3 

4 

2   ., ... 2 

1.7 

1.8 

2.3 

3.2 

express f(u) = A. + A«" + A-u , then v. = A. + A-U. + AoU.      -   k.. and 

d V ; ä V ; 2 
'.    -TT- = ui     •   ^-7-  -   ui 

The normal equations are 

=    2l    Vj   ——   =   0    . 
dAm it.     '     ^A 

so that 

or in other terms 

is I »Am 

avi 
= 0,     ( m =   I, 2, 3 ) 

U.     '      <>* 

4 
Z      (A^ A2Uj+ ASU.      -  k.  ) •   I   =0    , 

i=l 

4 
Z      ( A, +A2 Uj +  A, Uj2   - kj I     Uj = O    , 

1=1 

A 2 2 
Z     ( A, +A,,  U.+ A3 Uf      - k. )-   Uj     = O 

i = 1 

If the coefficients of A. are collected and the normal equations put in the form of 

Equation (182), the following three equations result: 

4A,    +     ( Zu,)   A2+ (Zui
2)A3 =    Z  ki    . 

i= 1 i=i                         i= 1 

( ZUJ) A|+(   Z u^A^ (Zu^Aa =    Z   Ui   k;    . 
i = i                    i =1 i=i                        i= 1 
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Now 

(   Iui
2)A1+(Iui

3)A2+   (luj^A,   -    X  u^i 

4 

ZUJ   =    1+2+3 + 4    =    10, 
i = i 

Z Uj  =   I + 4 + 9 +16   =   30,    etc. 
j =i 

so that 

4 A,  +   10 A2   + 30A,    =   9  , 

10 A,   +  30A2    +IOOA3   =25, 

30A, +I00A2 +354A3 = 80.8   • 

When these equations are solved for the coefficients, 

A,    =2    ,      A2 = -0.5,      A3 = O. 2 
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